Eulerian numbers and the m = 2 amplituhedron: signs and triangulations from the hypersimplex

Lauren K. Williams, Harvard

Based on:

- "The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron," with Tomasz Lukowski and Matteo Parisi, arXiv:2002.06164
- Work in preparation with Matteo Parisi and Melissa Sherman-Bennett
- (Previous works with Steven Karp and Karp-Zhang.)

Program

- Geometry of Grassmannian and matroid stratification. GGMS '87. Hypersimplex and matroid polytopes.
- Add *positivity* to the previous picture. Postnikov '06. Positroid stratification of $(Gr_{kn})_{\geq 0}$, positroid polytopes, plabic graphs.
- Simultaneous generalization of $(Gr_{k,n})_{\geq 0}$ and polygons: amplituhedron. Arkani-Hamed and Trnka '13.
- Thesis: ideas and results about the hypersimplex and positroid polytopes have parallels for the amplituhedron.
- Twistor coordinates and sign flips. Amplituhedron sign stratification and Eulerian numbers.
- The hypersimplex and the m = 2 amplituhedron: T-duality and positroid triangulations.

The Grassmannian and the matroid stratification

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The matroid associated to $A \in Gr_{k,n}$ is $\mathcal{M}(A) := \{I \in {[n] \choose k} \mid p_I(A) \neq 0.\}$

Gelfand-Goreksy-MacPherson-Serganova introduced the matroid stratification of $Gr_{k,n}$: given $\mathcal{M} \subset {[n] \choose k}$, the matroid stratum $S_{\mathcal{M}}$ is

$$S_{\mathcal{M}} = \{A \in Gr_{k,n} \mid p_I(A) \neq 0 \text{ iff } I \in \mathcal{M}\}.$$

Have the matroid stratification

$$Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}.$$

The Grassmannian and the moment map

Recall: given $\mathcal{M} \subset {[n] \choose k}$, the matroid stratum S_M is $S_{\mathcal{M}} = \{A \in Gr_{k,n} \mid p_I(A) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Let $\{e_1, \ldots, e_n\}$ be basis of \mathbb{R}^n , and $e_I := \sum_{i \in I} e_i$.

The moment map $\mu: \operatorname{Gr}_{k,n} \to \mathbb{R}^n$ is $\mu(A) = \frac{\sum_{I \in \binom{[n]}{k}} |P_I(A)|^2 e_I}{\sum_{I \in \binom{[n]}{k}} |P_I(A)|^2} \subset \mathbb{R}^n.$

Let $\Delta_{k,n} := \operatorname{Conv} \{ e_I : |I| = k \} \subset \mathbb{R}^n$ be the hypersimplex.

GGMS: the moment map image $\overline{\mu(S_M)}$ of the matroid stratum S_M is the matroid polytope $\Gamma_M := \text{Conv}\{e_I \mid I \in \mathcal{M}\}$. And $\mu(Gr_{k,n}) = \Delta_{k,n}$.

Remark: (normalized) volume of $\Delta_{k,n}$ is the *Eulerian number*, the numbers of permutations on S_{n-1} with k-1 descents.

What if we add the adjective "positive" to the whole story?

Background: Lusztig's theory of total positivity for G/P 1994, Rietsch 1997, Postnikov's 2006 preprint on the *totally non-negative* (TNN) or "positive" Grassmannian.

Let $(Gr_{k,n})_{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $(Gr_{k,n})_{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M}\subseteq {[n]\choose k}$$
. Let $S^{tnn}_{\mathcal{M}}:=\{A\in (\mathit{Gr}_{k,n})_{\geq 0}\mid p_I(A)>0 ext{ iff } I\in \mathcal{M}\}.$

(Postnikov) If $S_{\mathcal{M}}^{tnn}$ is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$(Gr_{k,n})_{\geq 0} = \sqcup S_{\mathcal{M}}^{tnn}.$$

What if we add the adjective "positive" to the whole story?

- Recall: matroid assoc to $A \in Gr_{k,n}$ is $\mathcal{M}(A) := \{I \in {[n] \choose k} \mid p_I(A) \neq 0.\}$
- And the matroid polytope is $\Gamma_{\mathcal{M}} = \text{Conv}\{e_{I} \mid I \in \mathcal{M}.\}$
- If $A \in (Gr_{k,n})_{\geq 0}$, call $\mathcal{M}(A)$ a positroid and $\Gamma_{\mathcal{M}}$ a positroid polytope.
- Can restrict moment map from Gr_{k,n} to (Gr_{k,n})≥0: each positroid polytope is moment map image of positroid cell. (Tsukerman-W.)

Theorem (Postnikov)

The positroid cells of $(Gr_{k,n})_{\geq 0}$ are in bijection with *decorated* permutations π on [n] with k antiexcedances. Also in bijection with equivalence classes of planar bicolored (plabic) graphs, or on-shell graphs.

How to read off a positroid (polytope) from a plabic graph

 Positroid cells ↔ *plabic graphs*, planar bicolored graphs embedded in disk with boundary vertices labeled 1, 2, ..., n and internal vertices colored black or white.

- WLOG we assume graph G is bipartite and that every boundary vertex is incident to a white vertex.
- Let $\mathcal{M}(G) := \{\partial(P) \mid P \text{ is a perfect matching of } G\}.$
- $\mathcal{M}(G)$ a positroid, and all positroids obtained this way (Postnikov).

Background and Motivation for the amplituhedron

- Introduced by Arkani-Hamed and Trnka in 2013.
- The amplituhedron is the image of the TNN Grassmannian under a simple map.

The amplituhedron $\mathcal{A}_{n,k,m}$:

Fix n, k, m with $k + m \le n$. Let Z be a $n \times (k + m)$ matrix with maximal minors positive. Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

- $\mathcal{A}_{n,k,m}(Z)$ depends on Z but its combin. properties appear not to.
- $\mathcal{A}_{n,k,m}$ has full dimension km inside $Gr_{k,k+m}$.
- When m = 4, its "volume" is supposed to compute scattering amplitudes in N = 4 super Yang Mills theory; the BCFW recurrence for scattering amplitudes can be reformulated as giving a triangulation of the m = 4 amplituhedron.

Background and Motivation for the amplituhedron

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$, let $Z \in Mat^+_{n,k+m}$ (max minors > 0). Let \widetilde{Z} be map $(Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Special cases

• If
$$m = n - k$$
, $A_{n,k,m} = (Gr_{k,n})_{\geq 0}$.

- If k = 1, A_{n,k,m} ⊂ Gr_{1,1+m} is equivalent to a cyclic polytope with n vertices in P^m (Arkani-Hamed Trnka).
- If m = 1, A_{n,k,m} ⊂ Gr_{k,k+1} is homeomorphic to the bounded complex of the cyclic hyperplane arrangement (Karp–W.)
- m = 4: case of main physical interest.
- m = 2: toy model for m = 4 and connected to hypersimplex! ...

Twistor coordinates

Fix n, k, m with $k + m \le n$, let $Z \in Mat^+_{n,k+m}$ (max minors > 0). Denote rows of Z by Z_1, \ldots, Z_n . Given a matrix Y with rows y_1, \ldots, y_k representing element of $Gr_{k,k+m}$, and $1 \le i_1 < \cdots < i_m \le n$, let

$$\langle YZ_{i_1}\ldots Z_{i_m}\rangle = \langle y_1,\ldots,y_k,Z_{i_1},\ldots,Z_{i_m}\rangle$$

(determinant of a $(k + m) \times (k + m)$ matrix). Call it a *twistor coordinate*.

Lemma

An element $Y \in Gr_{k,k+m}$ is uniquely determined by its twistor coordinates.

Recall that $\mathcal{A}_{n,k,m}(Z)$ is the image of $(Gr_{k,n})_{\geq 0}$ in $Gr_{k,k+m}$. Arkani-Hamed–Thomas–Trnka conjectured that the amplituhedron can be described directly in $Gr_{k,k+m}$ using twistor coordinates. True for m = 1 (Karp-W.)

Theorem: sign flip description of $\mathcal{A}_{n,k,2}$

Given a sequence (r_1, \ldots, r_n) of real numbers, define $var(r_1, \ldots, r_n)$ to be the number of sign flips as we read left to right (ignoring 0's). E.g. var(2, -1, 0, -2, 3, -1) = 3.

Theorem (Parisi–Sherman-Bennett-W.)

Fix k < n and m = 2, and $Z \in Mat^+_{n,k+2}$. Let

$$\mathcal{F}_{n,k,2}^{\circ}(Z) := \{ Y \in Gr_{k,k+2} \mid \langle YZ_iZ_{i+1} \rangle > 0 \text{ for } 1 \le i \le n-1, \\ (-1)^{k-1} \langle YZ_nZ_1 \rangle > 0, \\ \text{and } \operatorname{var}(\langle YZ_1Z_2 \rangle, \langle YZ_1Z_3 \rangle, \dots \langle YZ_1Z_n \rangle) = k. \}$$

Then $\mathcal{A}_{n,k,2}(Z) = \overline{\mathcal{F}_{n,k,2}^{\circ}(Z)}$.

Note:Arkani-Hamed–Thomas–Trnka conjectured this was true and sketched an argument that $\mathcal{A}_{n,k,2}(Z) \subseteq \overline{\mathcal{F}_{n,k,2}^{\circ}(Z)}$; Karp–W. gave an independent proof of this direction. We prove the converse.

Amplituhedron stratification and Eulerian numbers

• Def: the **amplituhedron sign stratification** is the partition of the amplituhedron into strata based on signs of twistor coordinates.¹

•
$$m = 2$$
: let $\sigma = (\sigma_{ij}) \in \{0, +, -\}^{\binom{n}{2}}$ be a sign vector.
Set $\mathcal{A}_{n,k,2}^{\sigma}(Z) := \{Y \in \mathcal{A}_{n,k,2}(Z) : \operatorname{sign}\langle YZ_iZ_j \rangle = \sigma_{ij}\}.$

- Call $\mathcal{A}_{n,k,2}^{\sigma}(Z)$ an amplituhedron sign stratum of $\mathcal{A}_{n,k,2}(Z)$. If $\sigma \in \{+,-\}^{\binom{n}{2}}$, call $\mathcal{A}_{n,k,2}^{\sigma}(Z)$ an amplituhedron (sign) chamber.
- Note: when m > 1, many amplituhedron strata are empty. Whether or not A^σ_{n,k,2}(Z) is empty depends on Z. Say σ is realizable for A_{n,k,2} if A^σ_{n,k,2}(Z) is nonempty for some Z.

Proposition (Parisi-Sherman-Bennett-W.)

All $\binom{n}{2}$ amplituhedron sign chambers in $\mathcal{A}_{n,k,2}$ are empty *except* for a collection indexed by the permutations $\{w \in S_{n-1} \mid w \text{ has } k \text{ descents}\}$. These permutations are counted by the *Eulerian numbers*. Note: the volume of the hypersimplex is the Eulerian number!

¹studied for m = 1 by Karp-W.

w-chambers in $A_{n,k,2}$ and *w*-simplices in $\Delta_{k+1,n}$

- Let $w = (w_1, w_2, ..., w_n = n) \in S_n$ with k + 1 cyclic descents. Let $I_r := \{j \in [n] : j \text{ a cyc descent of the rotation of } w$ ending at $r 1\}$.
- Define a corresponding amplituhedron *w*-chamber by $\hat{\Delta}_w(Z) := \{ Y \in Gr_{k,k+2} \mid \operatorname{sign} \langle YZ_a Z_j \rangle = (-1)^{|I_a \cap [a+1,j]|} \quad \forall a \neq j \}.^2$
- Theorem (P–SB–W): We have $\mathcal{A}_{n,k,2}(Z) = \cup_w \hat{\Delta}_w(Z)$.
- Given w as above, we also define the hypersimplex w-simplex as $\Delta_w := \text{Conv}\{e_{l_1}, \dots, e_{l_n}\} \subset \Delta_{k+1,n}$.
- Theorem (Stanley '77): We have $\Delta_{k+1,n} = \cup_w \Delta_w$.³
- Not a coincidence ...

²RHS gets multiplied by -1 if a > j and k even

³see also Sturmfels '96 and Lam-Postnikov '07

Lauren K. Williams (Harvard)

Theorem: characterization of gen. triangles of $A_{n,k,2}$

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

"Generalized triangles" of the amplituhedron

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- If S_π a positroid cell of (Gr_{k,n})≥0 such that dim S_π = km and Ž̃ is injective on S_π, call Z_π := Z̃(S_π) a generalized triangle for A_{n,k,m}.
- A (k, n)-unpunctured plabic tiling in n-gon is collection of noncrossing black polygons which can be triangulated into k black triangles.

Theorem: characterization of gen. triangles of $A_{n,k,2}$

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- If S_π a positroid cell of (Gr_{k,n})≥0 such that dim S_π = km and Ž is injective on S_π, call Z_π := Z̃(S_π) a generalized triangle for A_{n,k,m}.

Theorem (P–SB–W): characterization of GT's of $A_{n,k,2}$

Let \mathcal{T} be a (k, n)-unpunctured plabic tiling in *n*-gon. (any triangulation of it uses k black triangles). This gives a 2k-dimensional positroid cell $S_{\mathcal{T}}$ on which \tilde{Z} is injective, and all generalized triangles arise in this way.

This proved a conjecture of Lukowski-Parisi-Spradlin-Volovich. One can also define GT's for the moment map $\mu : (Gr_{k+1,n})_{\geq 0} \rightarrow \Delta_{k+1,n}$; they are in bijection with GT's for $\mathcal{A}_{n,k,2}$! (Lukowski-Parisi-W).

Positroid triangulations of the amplituhedron

The amplituhedron $\mathcal{A}_{n,k,m}$

Fix n, k, m with $k + m \le n$. Let $Z \in Mat^+_{n,k+m}$. Have $\widetilde{Z} : (Gr_{k,n})_{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix A to AZ. Set $\mathcal{A}_{n,k,m} = \mathcal{A}_{n,k,m}(Z) := \widetilde{Z}((Gr_{k,n})_{\ge 0}) \subset Gr_{k,k+m}$.

Positroid "triangulations" of the amplituhedron

- Have dim $\mathcal{A}_{n,k,m} = km \leq \dim(Gr_{k,n})_{\geq 0}$, so \widetilde{Z} generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- We say that $Z_{\pi} := \overline{\tilde{Z}(S_{\pi})}$ is a **generalized triangle** if dim $S_{\pi} = km$ and \tilde{Z} is injective on S_{π} .
- Problem: Find collection of generalized triangles {Z_π} whose interiors are pairwise disjoint, and whose union equals A_{n,k,m}(Z).
 Call this a (positroid) triangulation of A_{n,k,m}(Z).

Positroid triangulations of the hypersimplex

The hypersimplex $\Delta_{k,n} = \text{Conv}\{e_I \mid I \in {[n] \choose k}\}$

Fix k, n. Have the moment map $\mu : (Gr_{k,n})_{\geq 0} \to \mathbb{R}^n$:

$$\mu(A) = \frac{\sum_{l \in \binom{[n]}{k}} |p_l(A)|^2 e_l}{\sum_{l \in \binom{[n]}{k}} |p_l(A)|^2} \subset \mathbb{R}^n.$$

The hypersimplex $\Delta_{k,n} = \mu((Gr_{k,n})_{\geq 0}) \subset \mathbb{R}^n$.

Positroid "triangulations" of the hypersimplex

- Have dim $\Delta_{k,n} = n 1 \leq \dim(Gr_{k,n})_{\geq 0}$, so μ generally not injective.
- Recall we have cell decomposition of $(Gr_{k,n})_{\geq 0}$ into positroid cells.
- We say that $\Gamma_{\pi} := \overline{\mu(S_{\pi})}$ is a generalized triangle if dim $S_{\pi} = n 1$ and μ is injective on S_{π} .
- Problem: Find collection of generalized triangles {Γ_π} whose interiors are pairwise disjoint, and whose union equals Δ_{k+1,n}.
 Call this a (positroid) triangulation of Δ_{k+1,n}.

(Positroid) triangulations of $A_{n,1,2}$

• Recall that $\mathcal{A}_{n,1,2}$ is a polygon (*n*-gon) in projective space \mathbb{P}^2 .

- Positroid triangulations of $\mathcal{A}_{n,1,2}$ are ordinary triangulations of the *n*-gon
- Each triangulation consists of n-2 triangles, each of dimension 2
- The total number of triangulations of $A_{n,1,2}$ is the Catalan number $C_{n-2} = \frac{1}{n-1} {2n-4 \choose n-2}$.
- When n = 2, have two triangulations of $A_{n,1,2}$ (quadrilateral).

(Positroid) triangulations of $\Delta_{2,n}$

- Each positroid triangulation consists of n 2 positroid cells ("triangles"), each of full dimension n - 1;
- The total number of positroid triangulations of $\Delta_{2,n}$ is the Catalan number $C_{n-2} = \frac{1}{n-1} {2n-4 \choose n-2}$ (Speyer-W.)

Example: $\mu : (\mathit{Gr}_{2,4})_{\geq 0} \rightarrow \Delta_{2,4} \subset \mathbb{R}^4$

Comparison with $A_{n,1,2}$.

Conjecture (Lukowski-Parisi-W.)

Positroid triangulations of the amplituhedron $\mathcal{A}_{n,k,2}$ are in bijection with positroid triangulations of the hypersimplex $\Delta_{k+1,n}$. Bijection TBD ...

 Triangulations of Δ_{k+1,n} come from (n−1)-dim'l cells of (Gr_{k+1,n})≥0, while triangs of A_{n,k,2} come from 2k-dimensional cells of (Gr_{k,n})≥0.

• So we need to map (n-1)-dimensional cells of $(Gr_{k+1,n})_{\geq 0}$ to 2k-dimensional cells of $(Gr_{k,n})_{\geq 0}$.

Recall that cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ decorated permutations π on [n] with k antiexcedances.

Indexing of positroid cells by permutations

Combinatorics of cells of $(Gr_{k,n})_{\geq 0}$ (Postnikov)

- A decorated permutation is a permutation in which each fixed point is designated either **loop** or **coloop**.
- Cells S_{π} of $(Gr_{k,n})_{\geq 0} \leftrightarrow$ dec perms π on [n] with k antiexcedances, where **antiexcedance** is position i where $\pi(i) < i$ or $\pi(i) = i$ is coloop.
- One can read off description of cell S_{π} from π .
- Given (reduced) plabic graph representing positroid cell, can read off permutation π by following "rules of road": right at black, left at white.

T-duality map on positroid cells

T-duality: given loopless dec perm $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

- Lukowski-Parisi-W.: The T-duality map S_π ↔ S_{π̂} is a bijection: loopless cells of (Gr_{k+1,n})_{≥0} ↔ coloopless cells of (Gr_{k,n})_{≥0},
- Parisi-Sherman-Bennett-W.: Moreover it is a poset isomorphism.

Conjecture (Lukowski-Parisi-W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Given loopless decorated permutation $\pi = (a_1, \ldots, a_n)$ on [n], define $\hat{\pi} := (a_n, a_1, a_2, \ldots, a_{n-1})$, where any fixed points declared to be loops.

Conjecture (Lukowski–Parisi–W.)

A collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation of $\Delta_{k+1,n}$ if and only if the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation of $\mathcal{A}_{n,k,2}$.

Conjecture true for infinitely many triangulations

Theorem (Lukowski–Parisi–W.)

The following recursion constructs triangulations of $\Delta_{k+1,n}$ in terms of triangulations of $\Delta_{k+1,n-1}$ and $\Delta_{k,n-1}$:

Theorem (Bao-He)

The following recursion constructs triangulations of $\mathcal{A}_{n,k,2}$ in terms of triangulations of $\mathcal{A}_{n-1,k,2}$ and $\mathcal{A}_{n-1,k-1,2}$:

$$\left(\begin{array}{c} \mathcal{A}_{n,k,2} \\ \mathcal{A}_{n,k,2} \end{array} \right) = \left(\begin{array}{c} 1 \\ \mathcal{A}_{n,k,2} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right) + \left(\begin{array}{c} 2 \\ \mathcal{A}_{n,k,1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right) + \left(\begin{array}{c} 2 \\ \mathcal{A}_{n,k,1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right)$$

Theorem (L-P-W): These recursions are in bijection via T-duality.

Theorem (Parisi-Sherman-Bennett-W.)

Suppose that a collection $\{S_{\pi}\}$ of cells of $Gr_{k+1,n}^+$ gives a triangulation $\{\Gamma_{\pi}\}$ of $\Delta_{k+1,n}$. Then the collection $\{S_{\hat{\pi}}\}$ of cells of $Gr_{k,n}^+$ gives a triangulation $\{Z_{\hat{\pi}}\}$ of $\mathcal{A}_{n,k,2}$.

- Let $w = (w_1, w_2, ..., w_n = n) \in S_n$ with k + 1 cyclic descents. Let $I_r = \{j \in [n] : j \text{ a cyclic descent of the rotation of } w \text{ ending at } r-1\}.$
 - The hypersimplex w-simplex is $\Delta_w := \text{Conv}\{e_{l_1}, \dots, e_{l_n}\} \subset \Delta_{k+1,n}$.
 - The corresponding amplituhedron stratum is $\hat{\Delta}_w(Z) := \{ Y \in Gr_{k,k+2} \mid \operatorname{sign} \langle YZ_a Z_j \rangle = (-1)^{|I_a \cap [a+1,j]|} \ \forall a \neq j \}.^4$
- Claim: $\Delta_w \subset \Gamma_\pi \subset \Delta_{k+1,n}$ iff $\hat{\Delta}_w(Z) \subset Z_{\hat{\pi}} \subset \mathcal{A}_{n,k,2}(Z)$.
- Only proves conjecture in one direction because depending on Z, $\hat{\Delta}_w(Z)$ could be empty!

⁴RHS gets multiplied by -1 if a > j and k even

The Hypersimplex $\Delta_{k+1,n}$	VS	The Amplituhedron $\mathcal{A}_{n,k,2}$
	GENERALISED TRIANGLES	
$\Gamma_{G(\mathcal{T})}$ (Positroid Polytope)	unpunctured plabic tiling ${\cal T}$	(Grasstope) $Z_{\hat{G}(\mathcal{T})}$
$x_{[h,j-1]} \geq \operatorname{area}_{\mathcal{T}}(h \to j)$	compatible arc $h ightarrow j$	$sign\langle \mathit{Yhj} angle = (-1)^{area}\mathcal{T}^{(h ightarrow j)}$
$x_{[h,j-1]} = \operatorname{area}_{\mathcal{T}}(h \to j)$	facet defining arc $h ightarrow j$	$\langle Yhj \rangle = 0$
	w-SIMPLICES and w-CHAMBERS	
simplex $\Delta_w \subset \Delta_{k+1,n}$	$w \in S_n: w(n) = n, \# cdes(w) = k + 1$	chamber $\hat{\Delta}_w \subset \mathcal{A}_{n,k,2}$ such that:
$\Delta_w := Conv\{e_{I_1}, \ldots, e_{I_n}\}$	$I_a = I_a(w) := cdes(rot(w, a-1))$	$Flip(\langle Y\!a\hat{1}\rangle, \langle Y\!a\hat{2}\rangle, \ldots, \langle Y\!an\rangle) = \mathit{I}_{a} \setminus \{a\}$
$\Delta_{k+1,n} = \bigcup_w \Delta_w$		$\mathcal{A}_{n,k,2}(Z) = \bigcup_{w} \hat{\Delta}_{w}(Z)$
$\Delta_w \subset \Gamma_\pi$	\Leftrightarrow	$\hat{\Delta}_w \subset Z_{\hat{\pi}}$
	TRIANGULATIONS	
$\{\Gamma_{\pi}\}$ triangulates $\Delta_{k+1,n}$	\Rightarrow	$\{Z_{\hat{\pi}}\}$ triangulates $\mathcal{A}_{n,k,2}$
Eulerian triangulation $\{\Gamma_{\pi}\}$	positions of descents/sign flips	sign flip (BCFW) triangulation $\{Z_{\hat{\pi}}\}$

Table: Correspondences via T-duality (Parisi-Sherman-Bennett-W.)

Summary

- The hypersimplex Δ_{k+1,n} ⊂ ℝⁿ is the image of (Gr_{k+1,n})≥0 under the moment map μ. It is a polytope of dimension n − 1.
- The amplituhedron $\mathcal{A}_{n,k,2}(Z) \subset Gr_{k,k+2}$ is the image of $(Gr_{k,n})_{\geq 0}$ under the amplituhedron map \tilde{Z} . It is not a polytope and it has dimension 2k.
- Nevertheless, $\Delta_{k+1,n}$ and $\mathcal{A}_{n,k,2}(Z)$ are closely related via T-duality $\pi \mapsto \hat{\pi}$:
 - They both have natural decompositions into simplices/chambers counted by the Eulerian numbers.
 - The moment map μ is injective on an (n-1)-dimensional positroid cell S_{π} iff \tilde{Z} is injective on the 2k-dimensional positroid cell $S_{\hat{\pi}}$.
 - Δ_{k+1,n} and its generalized triangles can be described by inequalities;
 A_{n,k,2} and its generalized triangles have a parallel description using signs of twistor coordinates.
 - Every positroid triangulation of $\Delta_{k+1,n}$ gives rise to a positroid triangulation of $\mathcal{A}_{n,k,2}(Z)$ under T-duality.

I. Amplituhedron '13

- "The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron," with Lukowski and Parisi, arXiv:2002.06164
- "Eulerian numbers and the m = 2 amplituhedron: sign flips and triangulations," with Parisi and Sherman-Bennett, in preparation.