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Scattering amplitudes

The traditional approach to scattering amplitudes proceeds by writing down a lot of
Feynman diagrams and summing them.

The geometric/amplituhedral approach to the first step is to describe the integrand as
the “canonical differential form” of a geometric object (the “amplituhedron”).

You will have noticed that Feynman diagrams are completely hidden in the story as
discussed by Steven and Lauren. An appealing feature of the �3 story that I am going
to try to tell is that it is simple enough that we will actually be able to see both the
Feynman diagrams and the amplituhedron at once.
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Outline for this talk
I am going to describe for you the object that plays the rôle of the amplituhedron for
biadjoint scalar �3. It turns out that this object is much simpler than the amplituhedron
which Steven and Lauren have been talking about: it is a polytope (the convex hull of
finitely many points in Rn).

I am therefore going to spend a fair bit of time explaining how to think about the
canonical differential form associated to a polytope.

I am also going to explain exactly what form we want to produce, viewed as a sum
over Feynman diagrams.

I will then describe the �3 amplituhedron. It turns out to be a familiar polytope: the
associahedron, originally developed by Jim Stasheff in the 60s. I will sketch how its
canonical form agrees with the sum over Feynman diagrams.

Time permitting, I will say a little bit about how to think about what I have said from a
more cluster-y perspective, which also gives some insights into how to produce
amplituhedra for 1-loop and higher corrections.
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References

I should say up front that very little of what I am going to be discussing is my own work.

The main source I will be drawing on is the paper by Arkani-Hamed, Bai, He, and Yan
which constructed the amplituhedron for �3 theory: arXiv:1711.09102.

The reference for positive geometries more generally is the paper by Arkani-Hamed,
Bai, and Lam: arXiv:1703.04541.

Two references for the more cluster-y stuff at the end are:

I Bazier-Matte, Chapelier, Douville, Mousavand, T., Yıldırım, arXiv:1808.09986
and

I Arkani-Hamed, He, Salvatori, T., arXiv:1912.12948
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Canonical forms for positive geometries

The definition of what exactly a positive geometry is, and what its canonical form is,
will be discussed by Thomas.

In the general setting, we have a d-dimensional complex algebraic variety X , and a
positive part X�0, which is a semi-algebraic set inside the real points of X . When
(X ,X�0) is a positive geometry, there is a uniquely determined d-form, ⌦(X ,X�0), on
X , called its canonical form.

The amplituhedra inside Grassmannians are (conjecturally) examples of positive
geometries; their canonical forms come from pushing forward the differential forms on
BCFW cells.

A full-dimensional polyhedron P in Rd is also an example of a positive geometry. In
this case X = CPd and X�0 = P; we drop X from the notation, writing ⌦(P).
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Canonical form of a polyhedron

Let P be a full-dimensional polyhedron. ⌦(P) is defined inductively. The canonical
form of a point is defined to be 1. From there ⌦(P) is defined by

I For each facet F (codimension 1 face) of P, suppose that F is cut out by the
hyperplane f (x) = 0 and P is on the positive side of F . We require that the
residue of ⌦(P) along f (x) = 0 is ⌦(F ). That is to say:

⌦(P) = ⌦(F ) ^ df

f
+ · · ·

where the · · · denotes terms which remain smooth as f goes to zero.
I We further require that ⌦(P) has no other singularities.

In fact this is the same definition as in the general setting, except that in general, the
equation cutting out the boundary won’t necessarily be an affine-linear equation.
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Examples

The canonical form of the interval [a, b] is

⌦([a, b]) =
dx

x � a
� dx

x � b
=

(b � a)
(b � x)(x � a)

dx

We can check that its residue at a and b is 1, and it has singularities only at a and b.

The canonical form of a product of two intervals is

⌦([a, b]⇥ [c, d ]) =
(b � a)

(b � x)(x � a)
dx ^ (c � d)

(d � y)(y � c)
dy
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Canonical form of a simple polytope as a sum

A polytope P is called simple if the number of facets meeting at each vertex is d , the
dimension of the polytope. Suppose that P is simple.

Let us write V (P) for the vertices of P. For each vertex v 2 V (P), let us number the
facets meeting at v as F

(v)
1 , . . . ,F (v)

d
.

For F a facet of P, write fF for a linear form such that F lies in the hyperplane fF = 0.

⌦(P) =
X

v2V

sign(F (v)
1 , . . . ,F (v)

d
)

d^

i=1

df
F
(v)
i

f
F
(v)
i

Here the sign comes from the orientation of the outward facet normals.

That the formula satisfies the definition follows by induction: clearly the only poles are
along the faces fF = 0, and along such a face, the contributions which aren’t smooth
add up to give (by induction) dfF

fF
^ ⌦(F ).
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Canonical form of a polytope as a volume
There is another interpretation of the canonical form of a polytope.

If P is a polytope containing the origin in a real vector space V , there is a well-defined
irredundant expression for P as an intersection of half-spaces:

P =
n\

i=1

{x | hx , vii � �1}

where vi lie in the dual space V
⇤, and h·, ·i is the pairing between V and V

⇤.

Define the dual polytope to P, denoted P
_, to be the convex hull of vi .

Now ⌦(P) can be defined as follows:

⌦(P)(y) = d! Vol((P � y)_)dy1 ^ · · · ^ dyd

(The RHS is defined for y inside P as I set it up but it’s rational so it gives you
something well-defined on V .)
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The Feynman diagrams
Now we are going to switch gears and look at the physics input from the particular
QFT we are considering.

We are going to consider Dn, the planar, trivalent trees with n external nodes
numbered cyclically clockwise 1 to n.

To each internal edge, we associate the pair 1  i < j  n where the vertices on the
side not including n are i , . . . , j � 1.

The external nodes each have an associated momentum pi . We arrange things so
that

P
pi = 0. We associate to the internal edge eij the quantity:

Xij = (pi + · · ·+ pj�1)
2.
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The Feynman diagram sum

To make the connection to physics, one chooses two orderings of 1, . . . , n; we will
simplify matters by assuming the orderings are the same. We will consider the
following quantity:

Sn =
X

D2Dn

Y

eij2D

1
Xij

We want to relate this to the canonical form of a polyhedron. However, there are some
issues, notably that this a function, not a differential form!
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The associahedron

The simple associahedron An is, by definition, an (n � 3)-dimensional polytope whose
vertices correspond to the planar, trivalent trees in Dn, and whose facets correspond
to the eij . A vertex D lies on the facet corresponding to eij if eij appears in D.

Associahedra were first defined by Jim Stasheff in the 1960s for homotopy-theoretic
purposes: planar trivalent trees with n vertices also correspond to ways of
parenthesizing an (n � 1)-term non-associative product.

The vertices of An also correspond to the clusters of the cluster algebra of Dynkin
type An�3; this will come up again at the end.
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Realizing the associahedron

The first constructions as polytopes are due to Haiman (1984, unpublished) and Lee
(1989).

ABHY give a specific realization of the associahedron, which turns out to have very
interesting properties, but they aren’t actually essential for what I am attempting here,
so I am going to skip the details, and give only the form, which is important.

We consider a space Rn(n�3)/2, coordinatized by Xij (of which there are n(n � 3)/2).

Consider some (n � 3)-dimensional affine subspace Hn of Rn(n�3)/2. Define a polytope

Qn = Hn \ Rn(n�3)/2
�0 .

Assuming there is some point in Hn which lies in the positive orthant, Qn is an
(n � 3)-dimensional polytope, cut out by n(n � 3)/2 inequalities (Xij � 0).

Any (n � 3)-dimensional polytope with n(n � 3)/2 facets can be described in this way.
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Realizing the associahedron II

Let’s see some examples. The one example which can really be drawn is the n = 4
case. We have two Xij , namely X13 and X24, and the associahedron is given as
R2

�0 \ {X13 + X24 = c}.

For n = 5, the description is as the intersection with R5
�0 with a 2-dimensional

subspace, cut out by three equations.

ABHY gives a particular realization of An of this type, by defining an
(n � 3)-dimensional subspace Hn and setting

An = Rn(n�3)/2
�0 \ Hn

Most of what I say would work with any associahedron.
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Putting the pieces together

We are going to consider the form on Rn(n�3)/2 parameterized by Xij (of which there
are n(n � 3)/2).

⌦n =
X

D2Dn

sign(D)
^

eij2D

dXij

Xij

sign(D) 2 {1,�1}, and depends on the ordering of the edges in D, and I am not going
to be precise about it.

Theorem (Arkani-Hamed, Bai, He, Yan)
I The pullback of ⌦n to Hn is the canonical form ⌦(An).

I The canonical form of An is the standard volume form times the Feynman

diagram sum Sn.

The first statement follows from the description of the canonical form as a sum over
the vertices; the second follows by comparing the Feynman diagram sum to the
definition of ⌦n, together with a fact about the ABHY realization, which means thatV

dXij pulls back to ± the volume form (and some thought about the signs).
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Loop levels

The tree-level Feynman diagrams that we have been considering are the first
approximation to the amplitude; one needs to allow Feynman diagrams with loops.
How should this be thought about?

Look at the tree picture, and take the dual graphs. These give us triangulations of an
n-gon, which correspond to the clusters of a Dynkin type An�3 cluster algebra.

The dual of diagrams with one loop correspond (with a caveat) to clusters of a type Dn

cluster algebra, triangulations of an n-gon with one puncture.
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Loop levels II

Cluster algebraists have shown that Dn cluster algebras have (generalized)
associahedra. I showed (with Bazier-Matte, Chapelier, Douville, Mousavand, and
Yıldırım) that the ABHY associahedron construction can actually be generalized in a
very direct way.

For more at one loop, see work of Giulio Salvatori arXiv:1806.01842 and
Arkani-Hamed, He, Salvatori, Thomas arXiv:1912.12948.

There is a cluster algebra associated to a disk with any number of punctures, and it is
plausible that these should be related to higher loop corrections.

However, there are some issues that arise. With more than one puncture, the cluster
algebra has infinitely many clusters, even though there are only finitely many
diagrams. (In fact, there is already a certain mismatch at one loop, but it is relatively
benign.) This is a topic of ongoing work.
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Thank you!
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