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Abstract. We survey and extend results on a recently defined character on the
quasi-shuffle algebra. This character, termed iterated-sums signature, appears in the
context of time series analysis and originates from a problem in dynamic time warping.
Algebraically, it relates to (multidimensional) quasi-symmetric functions as well as
(deformed) quasi-shuffle algebras.
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1 Introduction

In his seminal 1954 paper [3], K.-T. Chen introduced the iterated-integral signature of
a smooth path taking values in a finite-dimensional smooth manifold. We recall the
definition for the special case of curves on d-dimensional Euclidean space using the
shuffle product introduced by Ree [13]. Let A = {1, . . . , d} be a finite alphabet, and let A∗

denote the free monoid, which consists of all words with letters from A; the unit element,
the empty word is denoted by e. A noncommutative product is concatenation of words,
denoted by juxtaposition. The linear space H spanned1 by A∗ has an algebra structure
given by the shuffle product � : H ⊗ H → H, recursively defined by e� u := u =: u� e
for all u ∈ H, and

ua� vb := (u� vb)a + (ua� v)b

for u, v ∈ H and a, b ∈ A. It is a standard result that (H,�, e) is a commutative algebra
[14].
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Given a smooth path x : [0, 1] → Rd, t 7→ x(t) = (x1(t), . . . , xd(t)) and a word
w = i1 · · · in ∈ A∗ define the iterated integral

S(x)w :=
∫
· · ·

∫
0<s1<···<sn<1

ẋi1(s1) · · · ẋin(sn)ds1 · · ·dsn.

This can be linearly extended to all of H in a unique way. In the literature either the
collection (S(x)w : w ∈ A∗) or its linear extension S(x) : w 7→ S(x)w ∈ H∗ are known as
the iterated-integral signature of x.

Chen showed that the signature satisfies the so-called shuffle relations, generalizing
integration-by-parts to iterated integrals: for any v, w ∈ H,

S(x)v�w = S(x)vS(x)w. (1.1)

In other words, if we regard the map S(x) as a formal word series S(x) = ∑w∈A∗ S(x)ww,
then it is a group-like element. One could also say that S(x) is a character over the shuffle
algebra. In any case, its logarithm Λ(x) := log S(x) is well defined as an element of the
free Lie algebra on d generators.

In control theory, the coefficients of the signature actually provide a universal descrip-
tion of solutions to affinely controlled ODEs. For a fixed path x : [0, 1] 7→ Rd as before,
and smooth vector fields f1, . . . , fd on Rq, consider the initial value problem

ẏ(t) =
d

∑
i=1

fi(y(t))ẋi(t), y(0) = ξ ∈ Rq. (1.2)

Using Picard iteration, the final value y(1) can be expressed as a series:

y(1) = ∑
w∈A∗

fw(ξ)S(x)w (1.3)

where the functions fw are defined recursively via the relation fe(y) = y and fiw(y) =
D fw(y) fi(y). T. Lyons’ insight was, that this expansion generalizes to control systems
with irregular (in particular: non-differentiable) drivers, in what is now known as rough
paths theory [10]. The main philosophy of the theory is that Equation (1.2) should be
interpreted as an integral equation, and the iterated integrals appearing in Equation (1.3),
which may not exist, should be replaced by an object –a geometric rough path– satisfying
properties similar to those of the signature, that has to be supplied as an input to the
problem.

Numerical schemes for Equation (1.2) are obtained by integrating the equation over
small interval of size h > 0, so that for a fixed t ∈ (0, 1)

y(t + h)− y(t) =
d

∑
i=1

∫ t+h

t
fi(y(u))ẋi(u)du =

d

∑
i=1

fi(y(t))(xi(t + h)− xi(t)) + o(h).
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Setting yk := y(kh) and xk := x(kh) for k = 0, . . . , N we are led to consider the associated
finite difference equation

yk+1 − yk =
d

∑
i=1

fi(yk)(xi
k+1 − xi

k).

Similar to the continuous case, it can be shown that yN can be expressed as a series:

yN = ∑
w∈A∗

fw(ξ)DS(x)w

where now the coefficient DS(x)w is defined using iterated sums instead of integrals, that
is, if w = i1 · · · in then

DS(x)w := ∑ · · ·∑
0<k1<···<kn<N

δxi1
k1
· · · δxin

kn
(1.4)

and we have defined increments δxj := xj+1 − xj for convenience. As before, we extend
this definition linearly to H.

We observe that DS(x) does not satisfy the shuffle relations (1.1). For example,

DS(x)i�j = DS(x)ij +DS(x)ji = DS(x)iDS(x)j − ∑
0<k<N

δxi
kδxj

k.

The last term on the right-hand side cannot be expressed as a linear combination of the
coefficients in Equation (1.4). The correct way to describe the product rule satisfied by the
iterated sums requires another product on words, generalizing the shuffle product, �,
over a larger alphabet. This product is known as quasi-shuffle. See, e.g.-[6, 7].

To describe the quasi-shuffle product, we first need to extend the alphabet A to a
commutative semigroup A. The internal law on A, which is associative and commutative,
will be denoted by using square brackets. By construction, every element of A can be
written uniquely (up to commutativity) as an iteration of brackets

[i1[i2[· · · in]]] := [i1i2 · · · in], i1, . . . , in ∈ A

where the definition on the right is consistent by associativity. We now denote by A∗

the free monoid, with empty word e. The linear space H spanned by A∗ has an algebra
structure through the quasi-shuffle product ? : H⊗ H→ H, recursively defined by

e ? u = u ? e and ua ? vb := (u ? vb)a + (ua ? v)b + (u ? v)[ab]

for u, v ∈ A∗ and a, b ∈ A.
We now extend the definition of DS in (1.4) to include letters from A by setting

δx[i1···in]j :=
n

∏
k=1

δxik
j .
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With this notation, the previous example rewrites

DS(x)i?j = DS(x)ij+ji+[ij] = DS(x)iDS(x)j.

Definition 1 ([4]). The iterated-sums signature of the discrete sequence x = (x0, . . . , xN) is
the collection DS(x) := (DS(x)w : w ∈ A) defined by Equation (1.4).

As before, we will not distinguish between the collection DS(x) and its unique linear
extension to H.

Theorem 2 ([4]). The iterated-sums signature satisfies the quasi-shuffle relations, DS(x)v?w =
DS(x)vDS(x)w, for all v, w ∈ H.

Using strict inequalities in (1.4) seems to be arbitrary. In fact, another signature is
defined as follows

DS−1(x)w := ∑
0<k1≤k2≤···≤kn−1≤kn≤N

δxi1
k1
· · · δxin

kn
.

This is a character on another algebra. To formulate this we immediately introduce the
general notation. On H define for θ ∈ R the θ-weight quasi-shuffle ?θ recursively as

e ?θ w = w = w ?θ e and wa ?θ vb = (w ?θ vb)a + (wa ?θ v)b + θ(w ?θ v)[ab].

For θ = 0 this is the (classical) shuffle, for θ = 1 this is the quasi-shuffle ? = ?1 defined
earlier, and we shall keep using the former symbol when convenient. Now: DS−1(x) is a
character on (H, ?−1). In the next Section, we will see how to translate between DS−1(x),
DS(x) and more general “signatures”.

Regarding Theorem 2, we mention here that for the case d = 1 there is an immediate
interpretation in terms of quasi-symmetric functions [11], [9]. In the multidimensional
case, Novelli and Thibon’s quasi-symmetric functions of level d [12] are the right object.

Lastly, we briefly mention the connection to time series analysis: in [4], we set out
to find polynomial functions of a time series x = (x0, x1, . . . , xN) ∈ (Rd)N+1 that are
invariant to time warping. We skip the precise definition, but morally these are functions
that do not change when the time series is run at a different speed. It turns out for d = 1
these are exactly the quasi-symmetric functions in the variables x0, x1, . . . , xN, xN+1, . . .
where we extend the time series constantly as xn = xN for n > N. For d ≥ 2 these
invariants should correspond to “d-dimensional quasi-symmetric functions”. These are
Novelli–Thibon’s quasi-symmetric function of level d [12]. In all cases d ≥ 1 the iterated-
sums signature, introduced in [4], stores these quasi-symmetric functions, evaluated on
some time series, as the character on the quasi-shuffle Hopf algebra. This signature can
be seen as the (polynomial) feature map corresponding to the dynamic time warping (DTW)
distance [1], a heavily used distance in the realm of time series analysis.

In the next section we will look at the algebras (H, ?θ) and maps between them. In the
last section we present some observations and open questions.
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2 (Quasi)-shuffle morphisms

The rather elegant algebraic description by Hoffman and Ihara of quasi-shuffle homomor-
phisms [7, 8] will be used now. We first recall their notation. For a power series f in t,
with zero constant coefficient, f (t) = ∑∞

n=1 cntn, define the linear map Ψ f : H → H

w 7→ Ψ f (w) = ∑
I=(i1,...,im)∈C(`(w))

ci1 · · · cim I[w].

Here C(n) is the set of all compositions of the integer p, i.e., tuples (i1, . . . , ip) of positive
integers such that i1 + · · · + ip = n. Given I = (i1, . . . , ip) ∈ C(n) and a word w =
w1 · · ·wn ∈ A∗ of length `(w) = n > 0, we define a new word I[w] ∈ A∗ by

I[w] := [w1 · · ·wi1 ][wi1+1 · · ·wi1+i2 ] · · · [wi1+···+ip−1+1 · · ·wn].

Here (as well as later) we are using the suitable convention that [a] := a for all a ∈ A.
In [8] an isomorphism from (H, ?+1)→ (H, ?−1) is given. We generalize this and let

for θ ∈ R

fθ(t) :=
1
θ
(eθt − 1) = ∑

n≥1

θn−1

n!
tn,

where the last line makes also sense for θ = 0. Define

f−1
θ (t) =

1
θ

log(1 + θt) = ∑
n≥1

θn−1

n
tn,

which, again, makes also sense for θ = 0.

Lemma 3. expθ : (H, ?0)→ (H, ?θ), expθ := Ψ fθ
, is a Hopf algebra isomorphism, with inverse

logθ := Ψ f−1
θ

.

Corollary 4. For θ, θ′ ∈ R, the map Eθ→θ′ := expθ′ ◦ logθ : (H, ?θ) → (H, ?θ′), is a Hopf
isomorphism and Eθ→θ′ = Ψeθ→θ′ , where

eθ→θ′(t) =
1
θ′
(e

θ′
θ log(1+θt) − 1)

= t− θ − θ′

2!
t2 +

(θ − θ′)(2θ − θ′)

3!
t3 − (θ − θ′)(2θ − θ′)(3θ − θ′)

4!
t4

+
(θ − θ′)(2θ − θ′)(3θ − θ′)(4θ − θ′)

5!
t5 − . . .

Remark 5. Using this map E and starting from the character DS(x) on (H, ?+1) we can construct
characters DSθ(x) on (H, ?θ) by defining〈

w,DSθ(x)
〉

:=
〈

Eθ→1w,DS(x)
〉

.
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We note that DS+1(x) = DS(x) and one can show that〈
[a1] · · · [ap],DS−1(x)

〉
= ∑

0≤i1≤···≤ip

δx[a1]
i1
· · · δx[ap]

ip
.

In other words, DS−1(x) is defined like DS(x) but with all strict inequalities (in the sum over
timepoints) replaced by weak inequalities.

We also note that DS0(x) is the iterated-integrals signature of the piecewise linear interpolation
of the (infinite dimensional) time series Xa indexed by a = [1k1 · · · dkd ] ∈ A and given by

n 7→ Xa
n =

n

∑
j=1

δxa
j =

n

∑
j=1

(δx[1]j )k1 · · · (δx[d]j )kd .

For θ 6∈ {−1, 0,+1} we currently do not have a satisfying alternative characterization of DSθ(x).

Example 6.

e1/2→1(t) = (e2 log(1+t/2) − 1) = ((1 + t/2)2 − 1) = t +
1
4

t2.

We get for example 〈[1],DS1/2(x)〉 = 〈[1],DS(x)〉 and〈
[1][1],DS1/2(x)

〉
=
〈
[1][1] +

1
4
[12],DS(x)

〉 〈
[12],DS1/2(x)

〉
=
〈
[12],DS(x)

〉
,

and hence〈
[1],DS1/2(x)

〉2
=
〈
[1],DS(x)

〉2
=
〈
[1] ?1 [1],DS(x)

〉
=
〈

2[1][1] + [12],DS(x)
〉

=
〈

2[1][1] + 1/2[12],DS1/2(x)
〉
=
〈
[1] ?1/2 [1],DS1/2(x)

〉
,

as expected.

We finally note that these different concepts of summation / integration appear
naturally in the field of stochastic analysis. Stochastic integration theory starts from
Riemann-type sums over stochastic processes2 X, Y, namely

I(X, Y) =
∫ 1

0
X dY ≈

n

∑
i=0

Xti(Yt+i −Yti).

The approximation here is in a probabilistic sense, meaning that the limiting procedure
should also take into account the stochastic nature of the setting. Due to the particular
analytic properties of these processes, the choice of the evaluation point ti in the above

2We recall that a stochastic process is a collection of random variables (Xt : t ∈ [0, 1]) [15].
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discrete approximation is a subtle matter. In a nutshell, different choices of this value lead
to very different notions of stochastic integrals. The choices Xti , Xti+1 and 1

2(Xti + Xti+1)
corresponds to the main three stochastic integrals, i.e. Itō, backward Itō and Stratonovich,
respectively. Each of these integrals has its own integration by parts rule, and they
are tightly related analytically, as well as algebraically. Quasi-shuffles enter the picture
when one considers these integrals at the level of the discrete approximations, since
the multiplication of iterated sums follows summation-by-parts. For example, for Itō
integration,

(X1 − X0)(Y1 −Y0) =
(
∑

i
(Xti+1 − Xti)

)(
∑

j
(Ytj+1 −Ytj)

)
= ∑

i<j
(Xti − X0)(Ytj+1 −Ytj) + ∑

j<i
(Ytj −Y0)(Xti+1 − Xti) + ∑

i
(Xti+1 − Xti)(Yti+1 −Yti)

≈
∫ 1

0
(Xt − X0)dYt +

∫ 1

0
(Yt −Y0)dXt + 〈X, Y〉t (Itō)

≈
∫ 1

0
(Xt − X0) ◦ dYt +

∫ 1

0
(Yt −Y0) ◦ dXt (Stratonovich)

≈
∫ 1

0
(Xt − X0) d̂Yt +

∫ 1

0
(Yt −Y0) d̂Xt − 〈X, Y〉t (backward Itō)

The term 〈X, Y〉, known as stochastic bracket, is an artifact of the diagonal term that
appears when multiplying iterated sums.

3 Observations

3.1 Expectation values of discrete signatures

We have seen that DS(x) is a character over the quasi-shuffle Hopf algebra (H, ?). That
means it is an element in the group of algebra morphisms, G̃ ⊂ G, where G is the
larger group of invertible linear maps sending the empty word to one. Both groups have
corresponding Lie algebras, g̃ ⊂ g, with g̃ containing the infinitesimal characters, whereas
g consists of linear maps that send the empty word to zero. It is clear that for any Φ ∈ G̃
we can find a unique α ∈ g̃, such that Φ = exp©? (α). Analogously, the group G is in
bijection with g. Recall that the convolution product of linear maps

α©? β := mF(α⊗ β)∆

is defined in terms of the deconcatenation coproduct on words

∆(w) = w⊗ e + e⊗ w +
n−1

∑
i=1

w1 · · ·wi ⊗ wi+1 · · ·wn.
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Let x be a random sequence, i.e. it has random variables as entries and hence DS(x) is
itself a random variable. The expectation of the iterated-sums signature is defined as the
liner map given by

µw
x := E[DS(x)w] = E

[
∑ · · ·∑

0<k1<···<kn<N
δxi1

k1
· · · δxin

kn

]
∈ R.

Note that µx ∈ G. Hence
κx := log©? µx

is a well-defined linear map in the Lie algebra g, sending the empty word to zero. Defining
µ′x := µx − ε, where ε is the counit in (H, ?), we have

κx = − ∑
n>0

(−1)n

n
(µ′x)

©? n

= µ′x −
1
2
(µ′x)

©? 2 +
1
3
(µ′x)

©? 3 − 1
4
(µ′x)

©? 4 + · · · .

It is then easy to see that for any word

µw
x =

|w|

∑
m>0

1
m! ∑

v1···vm=w
κv1

x · · · κvm
x

and

κw
x = −

|w|

∑
m>0

(−1)m

m ∑
v1···vm=w

vi 6=1

µv1
x · · · µvm

x .

Following the terminology for random variables in probability theory and call κx the
cumulant map and µx the moment map. Motivated by [2], which compute so-called
signature moments and cumulants, we address the more interesting problem of calculating
expressions like κ

[1][2]?[3]
x without expanding the quasi-shuffle product.

κ
[1][2]?[3]
x = − ∑

n>0

(−1)n

n
(µ′x)

©? n([1][2] ? [3])

= µ
[1][2]?[3]
x − µ

[1][2]
x µ

[3]
x −

1
2

µ
[1]?[3]
x µ

[2]
x −

1
2

µ
[1]
x µ

[2]?[3]
x

+
1
3
(µ′x ⊗ µ′x ⊗ µ′x)(∆⊗ id)∆([1][2] ? [3])

= E
[
DS(x)[1][2]DS(x)[3]

]
−E

[
DS(x)[1][2]

]
E
[
DS(x)[3]

]
− 1

2
E
[
DS(x)[1]DS(x)[3]

]
E
[
DS(x)[2]

]
− 1

2
E
[
DS(x)[1]

]
E
[
DS(x)[2]DS(x)[3]

]
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+ E
[
DS(x)[1]

]
E
[
DS(x)[2]

]
E
[
DS(x)[3]

]
.

Here we used the fact that DS(x) is an algebra morphism for the quasi-shuffle product ?.
Using that κ1

x = 0, we can invert this expansion and express µx in terms of κx

µ
[1][2]?[3]
x = κ

[1][2]?[3]
x + κ

[1][2]
x κ

[3]
x +

1
2

κ
[1]?[3]
x κ

[2]
x +

1
2

κ
[1]
x κ

[2]?[3]
x +

1
2

κ
[1]
x κ

[2]
x κ

[3]
x .

The general formula for expressing cumulants and moments, κx resp. µx, in terms
of each other is obtained by recalling the Hopf algebra isomorphism F from the Hopf
subalgebra of rooted ladder trees with decorations in the Butcher–Connes–Kreimer
Hopf algebra of rooted trees to the quasi-shuffle Hopf algebra (H, ?). Quasi-shuffle
products of words are identified with forests of decorated ladder trees. Hence, iterated
(reduced) deconcatenation coproducts on w1 ? · · · ? wn can be computed in terms of
iterated (reduced) coproducts on forests of ladders. For the above example we obtain

F([1][2] ? [3]) = F([1][2])F([3]) = 1
2

3

and compute the reduced Connes–Kreimer coproduct ∆′CK on the forest of two ladders

∆′CK 1
2

3 = 1
2 ⊗ 3 + 3 ⊗ 1

2 + 2 ⊗ 1 3 + 2 3 ⊗ 1.

Here the root-part is on the right. The first iterated reduced coproduct

(∆′CK ⊗ id)∆′CK 1
2

3 = 2 ⊗ 1 ⊗ 3 + 2 ⊗ 3 ⊗ 1 + 3 ⊗ 2 ⊗ 1.

This should be compared with the expression for κ
[1][2]?[3]
x . Hence, a product w1 ? · · · ? wn

corresponds to a forest F(w1 ? · · · ? wn) = t1 · · · tn. We denote the degree of a forest, i.e.,
the total number of its vertices, by |t1 · · · tn| := ∑n

i=1 |ti|, where |ti| corresponds to the
number of letters of the word wi = F−1(ti). Defining κ̃x := κx ◦ F−1 and µ̃x := µx ◦ F−1,
we find for

κw1?···?wn
x = κ̃x(t1 · · · tn)

= −
|t1···tn|

∑
m=1

(−1)m

m
µ̃⊗m

x ∆[m−1]
CK (t1) · · ·∆

[m−1]
CK (tn)

= −
|t1···tn|

∑
m=1

(−1)m

m ∑′

(t1,...,tn)

µ̃x(t
(1)
1 · · · t

(1)
n ) · · · µ̃x(t

(m)
1 · · · t(m)

n )

=
N

∑
m=1

(−1)m−1

m ∑′

(w1,...,wn)

E
[
DS(x)

(
w(1)

1 ) · · ·DS(x)(w(1)
n )
]
· · ·E

[
DS(x)(w(m)

1 ) · · ·DS(x)(w(m)
n )

]
,

where N := |t1 · · · tn| = |w1 ? · · · ? wn| and the primed sums refer to the constraint that
none of the forests t(i)1 · · · t

(i)
n (words w(i)

1 · · ·w
(i)
n ), for i = 1, . . . , m, can be the empty word,
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i.e., F−1(t(i)1 · · · t
(i)
n ) 6= 1. This sum can be expressed in terms of linearly ordered partitions

constructed as follows.

κw1?···?wn
x = κ̃x(t1 · · · tn) = −

|t1···tn|

∑
m=1

(−1)m

m ∑
π∈OPm

µ̃′x(tπ1) · · · µ̃
′
x(tπm).

The second sum on the right-hand side of the second equality runs over ordered partition
with m blocks. The computation of the order m, π := {π1, · · · , πm} and its blocks
πi is summarized in the following algorithm. The first step consists in partitioning
I ∪ J = [n] into subsets, where I 6= ∅ . Then consider the corresponding subsets of trees,
tI = ti1 · · · tip and tJ = tjp+1 · · · tjn . Apply to each tree in tI a single non-empty cut. This
may include the full cut (below the root). This produces a tensor product of forests

t′I ⊗ t′′I ,

where t′I 6= ∅. Next, define the set π1 := {t′I}. Then, define the forest t′′I tJ and repeat the
procedure to define successively the block π2, π3, up to πm for 1 ≤ m ≤ |t1 · · · tn|.

Remark 7. The computations of iterated coproducts of forests can be represented by matrices.
Each forest tλ1 · · · tλn determines a partition of order n of the degree N = λ1 + · · ·+ λn, where
λi = |tλi | > 0. We denote it as the 1× n matrix (λ1, . . . , λn). Now, to compute the lth order
convolution product, we may construct certain matrices of size l × n, where in column q we put
a weak composition of length l, (c1q, . . . , clq), of λq = c1q + · · ·+ clq, 1 ≤ q ≤ n, ciq ≥ 0, for
1 ≤ i ≤ l

Λln =

 c11 · · · c1n
... . . . ...

cl1 · · · cln

.

These matrices are constraint as follows:

1. The sum of the entries in each row must be bigger than zero, that is, for all 1 ≤ k ≤ l we
must have ∑n

p=1 ckp > 0.

2. For 1 ≤ p ≤ n, we have ∑n
r=1 crp = λp.

Item (1) reflects the fact that (µ̃− ε)(1) = 0. The l order convolution product is of the form

(µ̃− ε)
n

∏
i=1

tc1i ⊗ (µ̃− ε)
n

∏
i=1

tc2i ⊗ · · · ⊗ (µ̃− ε)
n

∏
i=1

tcli .

Here, tcij is the ladder tree of size |tcij | = cij. Hence, the composition (c1q, . . . , clq) amounts to
cutting the tree tλq into l (possibly empty) trees tciq of size ciq, 1 ≤ i ≤ l. Translated to words, we
find for [1][2] ? [3]

Λ(1)
12 =

(
[1][2] [3]

)
Λ(1)

22 =

(
[1][2] 0

0 [3]

)
Λ(2)

22 =

(
0 [3]

[1][2] 0

)
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Λ(3)
22 =

(
[1] [3]
[2] 0

)
Λ(4)

22 =

(
[1] 0
[2] [3]

)

Λ(1)
32 =

 [1] 0
[2] 0
0 [3]

 Λ(2)
32 =

 [1] 0
0 [3]
[2] 0

 Λ(3)
32 =

 0 [3]
[1] 0
[2] 0

.

Correspondingly, we have the iterated reduced coproducts:

[1][2] ? [3] + [1][2]⊗ [3] + [3]⊗ [1][2] + [1] ? [3]⊗ [2] + [1]⊗ [2] ? [3] + 3[1]⊗ [2]⊗ [3]

3.2 Chow’s theorem

Recall the “classical” Chow theorem for the iterated-integrals signature

Theorem 8 ([5, Theorem 7.28]). Every (finite dimensional projection of) a grouplike element (of
the unshuffle coalgebra) can be realized as (the finite dimensional projection of) the iterated-integral
signature of some piecewise smooth path X.

Heuristically: “iterated-integral signatures fill the entire group” or respectively,
“the logarithms of iterated-integral signatures fill the entire Lie algebra”. It turns
out that something analogous is not true for the iterated-sums signature. Indeed, let
x = (x0, x, . . . , xN) ∈ RN+1 then one can calculate

〈[12], logDS(x)〉 = ∑
j
(δxj)

2 ≥ 0.

Therefore, the image of the logarithm of iterated-sums signatures only reaches a certain
subset of the Lie algebra. This raises several questions

• Does the problem persist if x ∈ CN+1? (The above problem evaporates in this
setting, since ∑j(δxj)

2 can then reach any complex number.)

• In the real case: how to describe the subset of the Lie algebra that can be reached?

• Are there any implications, if any, to time series analysis?
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